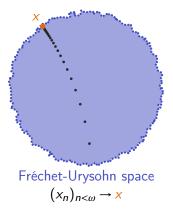
The structure of Fréchet-Urysohn and radial spaces

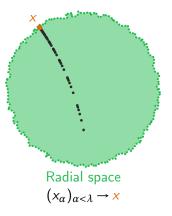
Robert Leek DPhil student, University of Oxford robert.leek@maths.ox.ac.uk www.maths.ox.ac.uk/people/profiles/robert.leek

> Winter School in Abstract Analysis, Set Theory and Topology section, 5th February 2015

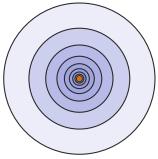
X is *Fréchet-Urysohn* at x if whenever $x \in \overline{A}$, there exists a sequence $(x_n)_{n < \omega}$ in A that converges to x. If X is Fréchet-Urysohn at every point x in X, then we say that the space is *Fréchet-Urysohn*.



X is radial at x if whenever $x \in \overline{A}$, there exists a *transfinite* sequence $(x_{\alpha})_{\alpha < \lambda}$ in A that converges to x. If X is radial at every point x in X, then we say that the space is radial.



X is *first-countable* at x if there exists a countable neighbourhood base for x. Equivalently, there exists a descending neighbourhood base $(U_n)_{n < \omega}$ for x. If X is first-countable at every point x in X, then we say that the space is *first-countable*.



First countable space

X is well-based at x if it has a well-ordered neighbourhood base with respect to \supseteq . If X is well-based at every point x in X, then way say that the space is well-based.

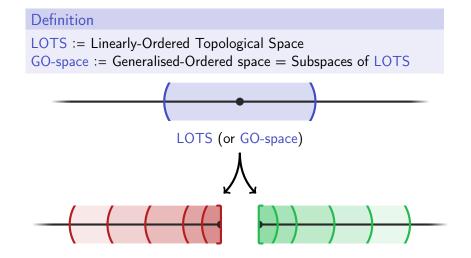
Well-based space

Some examples

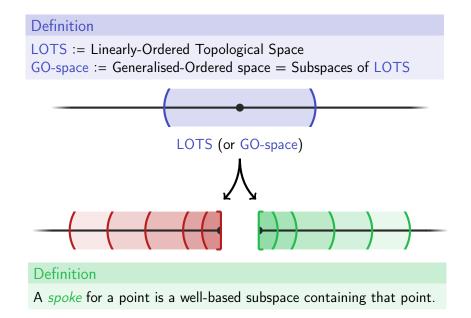
Definition

LOTS := Linearly-Ordered Topological Space GO-space := Generalised-Ordered space = Subspaces of LOTS

Some examples



Some examples



A collection of spokes \mathscr{S} for a point x is a *spoke system* for x if

$$\mathcal{B} := \left\{ \bigcup_{S \in \mathcal{S}} B_S : \forall S \in \mathcal{S}, B_S \in \mathcal{N}_x^S \right\}$$

is a neighbourhood base for x, where \mathcal{N}_x^S is the collection of S-neighbourhoods of x, for each $S \in \mathcal{S}$.

A collection of spokes \mathscr{S} for a point x is a *spoke system* for x if

$$\mathscr{B} := \left\{ \bigcup_{S \in \mathscr{S}} B_S : \forall S \in \mathscr{S}, B_S \in \mathcal{N}_x^S \right\}$$

is a neighbourhood base for x, where \mathcal{N}_x^S is the collection of S-neighbourhoods of x, for each $S \in \mathscr{S}$. Equivalently, for all $A \subseteq X$ with $x \in \overline{A}$, there exists an $S \in \mathscr{S}$ such that $x \in \overline{A \cap S}$.

A collection of spokes \mathscr{S} for a point x is a *spoke system* for x if

$$\mathcal{B} := \left\{ \bigcup_{S \in \mathcal{S}} B_S : \forall S \in \mathcal{S}, B_S \in \mathcal{N}_x^S \right\}$$

is a neighbourhood base for x, where \mathcal{N}_x^S is the collection of S-neighbourhoods of x, for each $S \in \mathscr{S}$. Equivalently, for all $A \subseteq X$ with $x \in \overline{A}$, there exists an $S \in \mathscr{S}$ such that $x \in \overline{A \cap S}$.

Theorem

Every point with a spoke system is radial.

A transfinite sequence $(x_{\alpha})_{\alpha < \lambda}$ converges strictly to a point x if it converges to x and x is not in the closure of any initial segment; that is, $x \notin \overline{\{x_{\alpha} : \alpha < \beta\}}$, for all $\beta < \lambda$.

Lemma

If X is radial at x and $x \in \overline{A}$, then there exists an injective transfinite sequence in A that converges strictly to x.

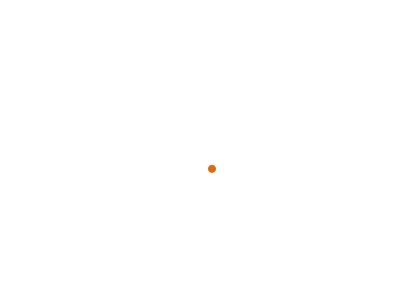
A transfinite sequence $(x_{\alpha})_{\alpha < \lambda}$ converges strictly to a point x if it converges to x and x is not in the closure of any initial segment; that is, $x \notin \overline{\{x_{\alpha} : \alpha < \beta\}}$, for all $\beta < \lambda$.

Lemma

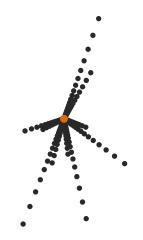
If X is radial at x and $x \in \overline{A}$, then there exists an injective transfinite sequence in A that converges strictly to x.

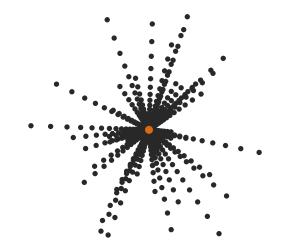
Lemma

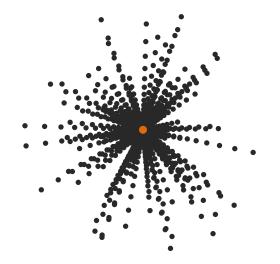
Let $(x_{\alpha})_{\alpha < \lambda}$ be an injective transfinite sequence that converges strictly to x. Then $S_{(x_{\alpha})_{\alpha < \lambda}} := \{x\} \cup \{x_{\alpha} : \alpha < \lambda\}$ is a spoke for x.

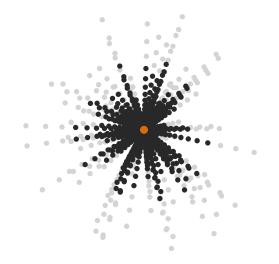












An internal characterisation of radiality

Theorem

For a point x in a topological space X, the following are equivalent:

- 1. X is radial at x.
- 2. X has an almost-independent spoke system S at x; that is, for distinct $S, T \in S, x \notin (S \cap T) \setminus \{x\}$.

An internal characterisation of radiality

Theorem

For a point x in a topological space X, the following are equivalent:

- 1. X is radial at x.
- 2. X has an almost-independent spoke system \mathscr{S} at x; that is, for distinct $S, T \in \mathscr{S}, x \notin (S \cap T) \setminus \{x\}$.

Proof.

If X is radial at x and not isolated, define:

 $\mathcal{T} := \{f : \lambda \to X \setminus \{x\} \mid \lambda \le |X|, f \text{ is injective and } f \to x \text{ strictly} \}$ $\mathcal{A} := \{\mathcal{F} \subseteq \mathcal{T} : \forall f, g \in \mathcal{F} \text{ distinct}, f^{-1}[\operatorname{ran}(g)] \text{ is bdd. in } \operatorname{dom}(f) \}$

Pick $\mathscr{F} \in \mathscr{A}$ maximal and define $\mathscr{S} := \{S_f : f \in \mathscr{F}\}.$

Let \mathscr{S} be a spoke system for x and $(x_{\alpha})_{\alpha < \lambda}$ be a transfinite sequence clustering at x with $x \notin \{x_{\alpha} : \alpha < \beta\}$ for $\beta < \lambda$, where λ is a regular ordinal. Then there exists an $S \in \mathscr{S}$ and a subsequence of $(x_{\alpha})_{\alpha < \lambda}$ contained in S and converging to x.

Let \mathscr{S} be a spoke system for x and $(x_{\alpha})_{\alpha < \lambda}$ be a transfinite sequence clustering at x with $x \notin \{x_{\alpha} : \alpha < \beta\}$ for $\beta < \lambda$, where λ is a regular ordinal. Then there exists an $S \in \mathscr{S}$ and a subsequence of $(x_{\alpha})_{\alpha < \lambda}$ contained in S and converging to x.

Proof.

As $x \in \overline{\{x_{\alpha} : \alpha < \lambda\}}$, there exists an $S \in \mathscr{S}$ such that $x \in \overline{\{x_{\alpha} : \alpha < \lambda\} \cap S}$. Then $\chi(x, S) = \lambda$...

Let \mathscr{S} be a spoke system for x and $(x_{\alpha})_{\alpha < \lambda}$ be a transfinite sequence clustering at x with $x \notin \{x_{\alpha} : \alpha < \beta\}$ for $\beta < \lambda$, where λ is a regular ordinal. Then there exists an $S \in \mathscr{S}$ and a subsequence of $(x_{\alpha})_{\alpha < \lambda}$ contained in S and converging to x.

Proof.

As $x \in \overline{\{x_{\alpha} : \alpha < \lambda\}}$, there exists an $S \in \mathscr{S}$ such that $x \in \overline{\{x_{\alpha} : \alpha < \lambda\} \cap S}$. Then $\chi(x, S) = \lambda$...

Proposition

If \mathscr{S} is an independent spoke system for x and $(x_{\alpha})_{\alpha<\lambda} \subseteq X \setminus \{x\}$ converges to x, with λ regular, then there exists $\mathscr{T} \in [\mathscr{S}]^{<\lambda}$ and $\beta < \lambda$ such that $\{x_{\alpha} : \alpha \in [\beta, \lambda)\} \subseteq \bigcup \mathscr{T}$.

Strongly Fréchet spaces

Definition (Strongly Fréchet)

A point x in a space X is strongly Fréchet if for every decreasing sequence of subsets (A_n) with $x \in \bigcap_{n \in \omega} \overline{A_n}$, there exists a sequence (x_n) converging to x with $x_n \in A_n$ for all $n \in \omega$.

Definition (Strongly Fréchet)

A point x in a space X is strongly Fréchet if for every decreasing sequence of subsets (A_n) with $x \in \bigcap_{n \in \omega} \overline{A_n}$, there exists a sequence (x_n) converging to x with $x_n \in A_n$ for all $n \in \omega$.

Theorem

Let x be a Fréchet-Urysohn point in X. Then x is strongly Fréchet if and only if for all (non-trivial) spoke systems \mathscr{S} at x and every countably infinite subset $\mathscr{A} \subseteq \mathscr{S}$, there exists an $S \in \mathscr{S}$ such that $A \cap S \neq \{x\}$ for all $A \in \mathscr{A}$.

Sketch proof.

⇒: consider $A_n := \bigcup_{m=n}^{\infty} S_m$, where $(S_m) \subseteq \mathscr{S}$. ⇐: use Zorn's Lemma (similar to proof of existence of almost-independent spoke systems).

Definition (Independently-based)

We say that a point x is *independently-based* if it has an *independent* spoke system \mathscr{S} ; that is, $S \cap T = \{x\}$ for all distinct $S, T \in \mathscr{S}$.

Definition (Independently-based)

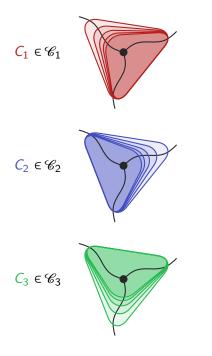
We say that a point x is *independently-based* if it has an *independent* spoke system \mathscr{S} ; that is, $S \cap T = \{x\}$ for all distinct $S, T \in \mathscr{S}$. Equivalently, there exists a collection \mathscr{C} of nests of neighbourhoods of x such that

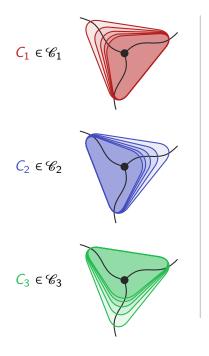
$$\left\{\bigcap_{C\in\mathscr{C}}U_C:\forall C\in\mathscr{C},U_C\in\mathscr{C}\right\}$$

is a neighbourhood base for x and for every selection $(U_C)_{C \in \mathscr{C}}$,

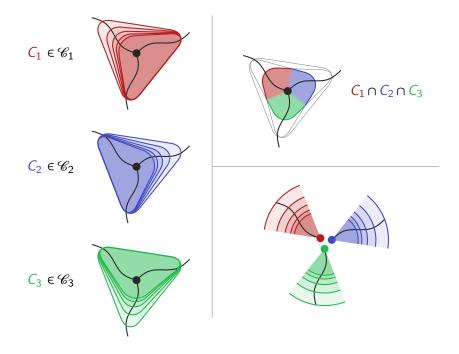
$$\bigcap_{C \in \mathscr{C}} U_C = \bigcup_{C \in \mathscr{C}} (U_C \cap S_C)$$

where $S_C := \bigcap \{ \bigcap D : D \in \mathcal{C}, D \neq C \}$.





$C_1 \cap C_2 \cap C_3$



Independently-based spaces

Theorem

A point x in a space X is first countable if and only if it is independently-based and strongly Fréchet.

Independently-based spaces

Theorem

A point x in a space X is first countable if and only if it is independently-based and strongly Fréchet.

Corollary

There exists a Fréchet-Urysohn space that is not independently-based.

Proof.

Take $X = \alpha D(\aleph_1)$.

Independently-based spaces

Theorem

A point x in a space X is first countable if and only if it is independently-based and strongly Fréchet.

Corollary

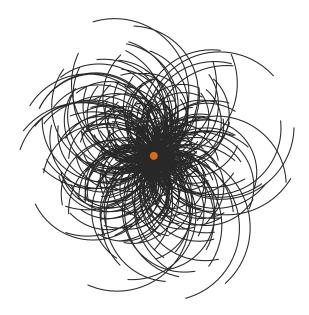
There exists a Fréchet-Urysohn space that is not independently-based.

Proof.

Take $X = \alpha D(\aleph_1)$.

Theorem

There exists a Fréchet-Urysohn space with a point that is neither strongly Fréchet nor independently-based.



Lemma (Reflection Lemma)

Let x be a Fréchet-Urysohn point, \mathscr{S}, \mathscr{T} be spoke systems at x, with \mathscr{T} independent. Then for all $K_S := \{T \in \mathscr{T} : x \in (S \cap T) \setminus \{x\}\}$ is finite, for all $S \in \mathscr{S}$.

Lemma (Reflection Lemma)

Let x be a Fréchet-Urysohn point, \mathscr{S}, \mathscr{T} be spoke systems at x, with \mathscr{T} independent. Then for all $K_S := \{T \in \mathscr{T} : x \in (S \cap T) \setminus \{x\}\}$ is finite, for all $S \in \mathscr{S}$.

Sketch proof of previous theorem.

For $x \in \mathbb{R}^2 \setminus \{0\}$, define $S_x := \{y \in \mathbb{R}^2 : \|y - x\| = \|x\|\}$ and let $\mathscr{B} := \{\bigcup_{x \in \mathbb{R}^2 \setminus \{0\}} (S_x \cap B(0, \varepsilon_x)) : \forall x \in \mathbb{R}^2 \setminus \{0\}, \varepsilon_x > 0\}$. If **0** is independently-based, then for each $x \in \mathbb{R}^2 \setminus \{0\}$, there exists an $\varepsilon_x > 0$ such that $S_x \cap S_y \cap B(0, \min(\varepsilon_x, \varepsilon_y)) = \{0\}$ for all distinct $x, y \in \mathbb{R}^2 \setminus \{0\}$. By the Baire category theorem, we obtain a contradiction.

If x is a Fréchet-Urysohn, non-first-countable point with a countable, almost-independent spoke system, then $\chi(x, X) = \mathfrak{d}$.

If x is a Fréchet-Urysohn, non-first-countable point with a countable, almost-independent spoke system, then $\chi(x,X) = \mathfrak{d}$.

Question

What if x has no countable, almost-independent spoke system?

If x is a Fréchet-Urysohn, non-first-countable point with a countable, almost-independent spoke system, then $\chi(x, X) = \mathfrak{d}$.

Question

What if x has no countable, almost-independent spoke system?

Question

Let \mathscr{A} be an almost-disjoint family on ω and topologise $\omega \cup \{\star\}$ by declaring A to be a sequence converging to \star and $\{A \cup \{\star\} : A \in \mathscr{A}\}$ is a spoke system at \star (so $\omega \cup \{\star\} \cong \Psi(\mathscr{A})/\mathscr{A}$). What is the character of \star ?

R. Leek.

Convergence properties and compactifications.

Submitted, 2014.

Pre-print available at http://arxiv.org/abs/1412.8701.

🔒 R. Leek.

An internal characterisation of radiality. *Topology Appl.*, 177:10–22, 2014.